Resources

Posters

Publications

Crimaldi J.P., Wiley M.B., Koseff J.R.(2002)  The Relationship Between Mean and Instantaneous Structure in Turbulent Passive Scalar Plumes. Journal of Turbulence 3 (014), no. 3. Results of laboratory investigations into the structure and fluctuations in turbulent odor plumes in water.

Ermentrout, G. B., Galán, R. F., & Urban, N. N. (2008). Reliability, synchrony and noise. Trends in neurosciences, 31(8), 428-434.  doi:10.1016/j.tins.2008.06.002

Ermentrout, B., Flores, J., & Gelperin, A. (1998). Minimal model of oscillations and waves in the Limax olfactory lobe with tests of the model’s predictive power. Journal of neurophysiology, 79(5), 2677-2689.

Ermentrout, B., Wang, J. W., Flores, J., & Gelperin, A. (2001). Model for Olfactory Discrimination and Learning in Limax Procerebrum Incorporating Oscillatory Dynamics and Wave Propagation. Journal of neurophysiology, 85(4), 1444-1452.

Escanilla, O.D., Victor, J.D., and DiLorenzo, P.M.  (2015)  Odor-taste convergence in the nucleus of the solitary tract of the awake freely licking rat. J. Neurosci,. 35, 6284-97. This paper shows that an important step for food identification, the merging of taste and odor information, occurs very early in sensory processing – in the nucleus of the solitary tract, the first brainstem nucleus that receives taste signals.

Galán, R. F., Fourcaud-Trocmé, N., Ermentrout, G. B., & Urban, N. N. (2006). Correlation-induced synchronization of oscillations in olfactory bulb neurons. The Journal of neuroscience, 26(14), 3646-3655.  doi: 10.1523/JNEUROSCI.4605-05.2006

Gerkin R.C., Tripathy S.J., Urban N.N. (2013) Origins of correlated spiking in the mammalian olfactory bulb. Proc Natl Acad Sci U S A. 2013 Oct 15;110(42):17083-8. doi: 10.1073/pnas.1303830110.

Jacobs, L. F. (2012). From chemotaxis to the cognitive map: the function of olfaction. Proceedings of the National Academy of Sciences of the United States of America, 109, 10693–10700.

Jacobs, L. F., Arter, J., Cook, A., & Sulloway, F. J. (2015). Olfactory orientation and navigation in humans. PLoS ONE, 10(6), e0129387.

Moore P.,  Crimaldi J.P. (2004) Odor Landscapes and Animal Behavior: Tracking Odor Plumes in Different Physical Worlds. Journal of Marine Systems 49, no. 1-4.  doi:10.1016/j.jmarsys.2003.05.005. Review of chemical odor plumes and animal tracking behavior across a range of physical environments.

Oswald A.M., Urban N.N. There and back again: the corticobulbar loop. Neuron. 2012 Dec 20;76(6):1045-7. doi: 10.1016/j.neuron.2012.12.006.

Rebello M.R., McTavish T.S., Willhite D.C., Short S.M., Shepherd G.M., Verhagen J.V. Perception of odors linked to precise timing in the olfactory system. PLoS Biol. 2014 Dec 16;12(12):e1002021. doi: 10.1371/journal.pbio.1002021. eCollection 2014 Dec.

Rebello M.R., Kandukuru P., Verhagen J.V. Direct behavioral and neurophysiological evidence for retronasal olfaction in mice. PLoS One. 2015 Feb 12;10(2):e0117218. doi: 10.1371/journal.pone.0117218. eCollection 2015.

Rucci, M., and Victor, J.D. (2015) The unsteady eye: an information processing stage, not a bugTrends in Neurosciences ,38, 195-206. This review explains how fixational eye movements, often considered to be a necessary evil to prevent image fading, are instead a crucial information processing step that carries out a reformatting of spatial information into the spatiotemporal domain.

Verhagen J.V., Engelen L. The neurocognitive bases of human multimodal food perception: sensory integration. Neurosci Biobehav Rev. 2006;30(5):613-50. Epub 2006 Feb 2. Review.

Yu, Y., Schmid, A.M., and Victor, J.D. (2015) Visual processing of informative multipoint correlations arises primarily in V2Elife. 2015;10.7554/eLife.06604. This paper shows how the neural computations that extract visual features are tuned to the statistics of the natural environment, and suggests a common computational theme for the transformations carried out in visual cortical area V2.

Yu Y., Burton S.D., Tripathy S.J., Urban N.N. Postnatal development attunes olfactory bulb mitral cells to high-frequency signaling. J Neurophysiol. 2015 Nov;114(5):2830-42. doi: 10.1152/jn.00315.2015.